Internet Technology

A summary? Final release.
By yours truly, Jakub Stachurski

Table of Contents

PIEAIMIDIE. ...ttt ettt et sttt et b e bt st be e a e e n e e be e renanens 2
WL IITO ettt et e et e e e st e e e st ba e e s sabbeeeesaasbaee s asbaeeseasbaeeesasaeeessassaeesanaseeesannnns 3
INEEITMIOT. c..ceiiiiiieiiiete ettt e e ab e e e s b e e b e e aa e s aa e e e aneeeane 3
THE EAGE...eeeeeeeeeeieeeeee ettt ettt e e st e e st e e s s te e s te e e st e e e tae e e tbeeebaeensbaeensbae e sbeeennaeeenaaeans 4
TTHE COTB...eiteteet ettt et b et b et e e s be et sat e s bt et e e m e e ebeesesatesstebeennenneenenas 4
PACKETS. ..ttt et s e et e e et e e et e e et e e et t e e e ab e e e bt e e e tteeebaeeenraeenaraeenaraean 5
CIICUIL SWITCRING. c.eveiiteiiieetteete ettt ettt e s bt e st s et e s bt e st e e st e e bt e sssaesabeesasessaesass 5
Store and FOrward MOel..........coocviiiiiiiiiiieeeieecee ettt e s aae e st e e ssae e e sta e e esaeeesanaeenanas 6
W2: Multimedia and APPLICAtIONS.......c.c.eeriiirieiriieeiierie ettt ettt te et e st e s beesabesssaessaesasaesaneas 8
What protocol should I use fOr MY aPP?....ccc.eeeiiiiiiiiiiiniierieeee et rte e teeseeeaeessbeessaeesaeenes 8
Client-Server OF PEEr 10 PEEI?........cocii ittt ettt ettt sttt e et e st e s beesatessbaesssessaenaranns 9
A SIMPle NEtWOTK @DP TECIPE......iiiiiiiiiieiriieieiteeeiee st e srte e e ste e s reeeesteeesaeeessseeessseesssseessseessssessseesnnnes 9
RS ettt ettt et e bbbt st e bt et e e a e bt e b e e st e bt et eea b e bt et e e ateene e b e e ne e beeane 11
HTTTP.cccee ettt sttt et h et et e s bt et et e s bt et e e st e s bt e b e e st e bt enbeeate b e eabeeatenseensesaeenee 11
HTTP ROW It WOTKS. ...ttt ettt ettt sb et st st be e b neenees 12
COOKIES. ..t inreeeiieeetee ettt et e e st e e st e e s te e ettt e e baeesabaeesabaeesseaeesseessteeensaeaessaaeassaeeasseeenssaeennsaeensraennns 12
W3: Naming and addreSSINg........cccueerieriiinieriiienieeieerte et este sttt esteesate s bt e satesbeesstessseesssessseesasesnseenns 14
IDVA QNI POTLS....vieiiiieeiieeeie ettt e et e e st e e st e e stte e ssaae e ebtee s st eesssaeesssaaeassaeesssaeensseesnsseesnsseesnsseensseens 14
DHE Pttt a ettt s bt e b e st s bttt e st e e bt et st e a e e bt et e e bt e bt st e e st e bt et e ent e beesesanens 15
LNK LAY O e eutieeeiiieeeieeeeie ettt ettt e e st e s st e e e st e e e abeeessteessbeesasseessssaesssaaesssaeenssaeenssaeensseennsses 16
ARP (Address Resolution PrOtOCOL)........cccuuiiciieiiieieiieecte et eeieeeeieeesveeeeveeesereessraeessaesensaeesnsaeenns 17
DINS ettt ettt ettt e a e h et e a e h e et e e a e e bt et e e a e e bt et e e st e bt et e e at e beebeeatenbeenteeatenee 17
W4: Wireless COMMUNICATION.cc.eiruertertirterterteetesitesteeteeseesseetesseesseetesseessessesseesseestesseensesasesseeseenees 19
BrOAdCASTINE. . ccuvieeiiiieeiiieeiieeeiteeete et e et e e st e s sateessaaeeest e e s st e esssaeesssaaesssaeessseeensseesnsseeensseesssseesssseens 19
WITELESS. ...ttt ettt et s bbb e st e bt et s st e bt et e e at e s bt et e st e bt e b e et e naeenne 19
WiFi: Connecting and TranSImMitting........ccceercueeeriuieiriierniieeenieeesieeesseeeesreesseeeesssseesssseesssseesssseessnnes 21
WIFT: AAIESSING. .. .eeeieiiieiieeieeeieet ettt ettt s e et e e st e e bt e st e e st e st e e bt essbeesaaesasaensaesssesseesases 22
WS Y DOISECUIILY ... veieiiieieiteeette et e et e et e et e e s te e et eestaeesbaeesssaeesssaaesssaeesssaeenssaesnsseesnseesnsseesnsseenns 23
DIDOS DASICS. c.uveutenreireriteriteteeteste et ettt et e st e e st s ate bt et e st e s bt e b st e s bt et et e e bt e bt st e sbe e be et e bt e nesatenaeen 23
Where do I get some of them compromised SYStEIMS?........ccccueerreerrieerieriieniieerieeseeesreeereesaeesseessees 23
Amplification and RefleCtion............c.coviiiiiiiiiriiiieee ettt sttt 24
DIDOS AtEACK LY DS, eeieutieieiieieiteeriee ettt este e e st e ssteesstaeestaeessaeessseeesssaeessseessssaesssseesssseesssseessseeenssaeenns 25
IMIEIZATION. ..ceeeueteeeeeietee e ettt e e ettt et e et e e e ettt e e e bbeeeseemsaeeeeenraeeeeeasseeeseamstaeesensaeeeasnssaeesesnnsaeesssnnneeeann 25
W2 TOT GUESE LECUTE.....ceuviiiiieieiieeeite et et et e st e st e e s stte e sbaeesbeeessbaeesssaeesssaessssaessseesnsseesssseenssaeens 26
IDK, It was basically making fun of IOT and more abt DDOSSING......c...cocervuerierienienienieneeneenees 26
TLDR. .ttt ettt ettt e bt et st et e b e e a e e s bt et e e a b e bt et e e a e e bt et e e at e bt et e eat e bt e be st e naeebeeneen 26

http://wilkuu.xyz/

Preamble

This summary is definetely better than what is out there now. But I am a bit sleep deprived an I am
writing this summary on my 3 hour train commute to uni, so some things might not be mathing.

When it comes to my IntTech experience, I passively listened to the lecures since it looked like
something I saw already.

I got all my network engineering experience mostly from youtube, setting up Wifi on linux (The
memes are true when it comes to that) and hacking into the family router to lift my internet curfew
(terminally online behaviour)

But anyway, take this with a grain of salt, since I might not stick to the material 100%. That is because
there is some context that might people understand the abstract material more.

This version was made in 2024 and includes some things that were missing before.

Enjoy this wreck!

W1: Intro

Internet

The internet is a network of billions of devices
that in which any device can communicate
with any other device (if not inpeded in any
way like a firewall or something)

All the devices use the internet for networked
applications (application that use the network,
think of browsers etc.)

They communicate using protocols, which are
a common format and procedures on how to
communicate with another device. (Think of
how you ask a stranger for time)

There are two types of devices on the internet:

* Edge devices/hosts/servers, like
computers, phones and servers. They
are like leaves on a big internet tree.

¢ Core devices, like routers, switches,
access points and cell towers. They are
the branches which hold everything together.

Those devices are linked using physical links with a certain bandwith, here are some examples:
* Wires like Phone wire, Ethernet cable,
* Light: Fibre-optic cables
* Radio(Wireless): 4G, Wifi, Bluetooth, Starlink ,Zigbee, Lora and more

The internet is divided into networks that are managed by Internet Service Providers (ISP’s) so most of
the time when you want to communicate with a device, this is the path the communication takes:

Starting device — Wifi router -~ Modem — {A bunch of ISP infrastracture} — {Global ISP’s infrastructure} - {A bunch
of targets ISP’s infrastracture} — Target’s modem — Targets router — Target

With all the arrows being physical links that have their own bandwith.

The edge

The edge is comprised of smaller access networks like home networks and networks in institutions,
that serve the purpose of connecting the hosts and servers to the bigger core networks. They are more
local and do not have the comical amount of bandwith core networks have.

Home network example:

O

Mshtm

(«

&
{

Lagean Aodter

(7

berart Feane

w
&

The core

The core networks are here to connect access networks to the rest of the internet. They are the railways,
highways and airlines of the internet. They are owned by ISP’s which collect all of their client access
networks and connect them to other ISP’s. This network of ISP’s is then what comprises the whole
internet. Basically it is a “Mesh of interconnected routers” that passes stuff from one edge network to
any other network.

The core has two important tasks to accomplish its goals:
* Routing: Create a path from one point on the edge to another using smart algorithms and stuff

* Forwarding: Get the input of the router to the appropriate output, in order to make the packet
travel on the path specified in the last step.

Packets

Just like you probably don’t want a completely assembled closet dumped on you front door, Google
drive upload servers do not want to have a 1TB zip file of “Homework material” thrown at them in one
go either. This is why communication on the internet is done using packets, which are neatly
divided and labled parts of the message that get sent separately through the network, just like a Ikea
closet would come in a bunch of boxes and a manual on how to assemle the closet. This is called
packet switchih.

The technique used to pass those packets through the network to allow multiple hosts on a network is
called Store and Forward. Packets sent this way are pushed in their entirety through the link at
full link capacity from one device to the other along the route to finally reach the destination.

The packet needs to be received in its entirety before it can be sent further.

—_—
L bits IR
per packet _ .
321 :
source <Cgg=". \ router B~
¢ Rbps st R bps T~

destination

Circuit switching

Instead of switching using packets, you could also have mutltiple dedicated circuits per link that are
then connected together between circuit switches to create a route. This ensures maximum performance
per built link, but also limits the amount of devices to the amount of links. This approach also means
that you loose out on performance when there is less active hosts than circuits since you cannot share
bandwith across those links.

This is the way old telephone lines worked.

Store and Forward model

A packet going through a router using store and forward model can be compared to a person shopping
around the mall, where the routers are stores:

Router Store Name
Kinds of delay
Processing incoming packet Putting the products on the conveyor | Processing delay
Waiting in the packet queue Waiting for the clients in front of you |Queueing delay
Packet being transmitted Having the cashier scan your products |Transmission delay
Traveling across the link to the next | Walking to the next store or going Propagation delay
router or to the target host home
Things that can go wrong
Queue is full and the packet is The queue in the supermarket reaches |Packet loss
dropped. all the way to the entrance .., so you
give up.

What happens under the hood for each of these things, and what are the formulasge?

The processing delay is where the router checks if there are bit errors (AKA if the packet did
not get corrupted) and determines where to send the packet next. It has no formula and is mostly
negligible.

During the Queueing delay there isn’t much happening for the packet besides waiting. There is
no formula specified in the slides.

The transmission delay is when the bits of the packet are transmitted across the link. The
formula is: L/R where L is the size of the packet in bits and R is the bandwith in bits/second.

Propagation delay is the time it takes to travel across the link. The formula is d/s where d is the
length of the link in meters and s is the propagation speed. The propagation speed is often a
constant from nature, like the speed of light or the speed of sound.

Alil picture to visualize this shiz

rivpayauwvii ycuay. uso

transmission 7
R
. <-propagation—
-_— g =< =
\.‘ O u '[

* &

processing queueing

den gl + g, + d

nodal — proc queue trans prop

The transfer speed on the route in this model is limited by the slowest link. This means there is a
possibillity of a bottleneck. In this image the througput of the first pipe is less of the next one limiting
the second pipe from using full capacity.

|
-

server sends bits pipe that can carry pipe that can carry

(“fluid”) into pipe bits at rate bits at rate
R, bits/sec R, bits/sec]

When measuring the amount of data that crosses from the source to the destination (with routers in the
middle) we speak of througput, which is the bits per second on received at the destination.

* Instantenous: Througput right now

* Average: Througput over a given period of time.

A little tip

This calculation can be easy when talking about a single node. But in the exam, you might encounter
problems with multiple nodes, here are some information.

Most likely you will only have to deal with propagation delay and the transmission delay (And when
dealing with bottlenecks, the queueing delay).
For this you can use the simplified transfer time formula for a single link(unofficial):
t_transfer = (d_trans * N) + d_prop
For multiple nodes it is more complicated
You need to find the bottleneck first (the link with the slowest d_trans), d_slow
Then you need to calculate the time it takes for a single packet to get across:

t_single = X(t_transfer_i) (sum up all the transfer times)

Afterwards you calculate the transmit time at the slowest node for all packets besides the one that
made it all the way

t_{slowest transmit} = d_slow * (N — 1)

The final time for transfer is then:
t_ttotal = {t_single + t_slowest transmit}

This works because all nodes in the chain need to transmit the packets, so the bottleneck needs to do
that too. And because the bottleneck is the slowest, all packets will need to spend time waiting there
(or on their way to get there).

NOTE: The problem with this formula is that if there is a smaller bottleneck behind the bigger
bottleneck, this formula Is no longer valid.

The most important thing is to try and visualize (on paper) how the packets come and go.
This can be hard in bigger networks, but for the test the networks should not be that big.

Layers

As said before, the packet also is labled in some way. This is done using a layered architecture that
also abstracts some of the complexity of the whole network away. The labeling has multiple layers to
Each layer does not care what happens at a previous layer for the most part.

L# Layer name

5 |Application layer

Explaination

The networked application

Examples

HTTP (Browsers), SMTP,

(Email)
4 |Transport layer Communication protocol between apps UDP, TCP
Networking layer |Routing between the source and destination Ipv4, Ipv6

2 |Data-Link layer

Communication between two neighbouring

nodes

Ethernet, Wifi, Bluetooth

1 |Physical layer

Putting the data over the link

Radio, Wires, Fibre

The data from each layer is stacked on top of the
message in form of headers:

source

message [M | applid

tation

segment H| M trans

datagram IE H] M] net

frame |H|Hp[H| M li

phy

port D
ork

Kk .
ical

destination

application
transport

network
link

(] ™
([M]

Hi|Hy Hy| M

Encapsulation

| in
physical

switch

Network
M link HH| ™
physical

router

Disambiguation of terms and data unit content:

L# Layer How to call a unit of What does it contain
data here?
5 |Application Data Not specified (Body + Headers for HTTP)
4 |Transport Segment Data + Headers
3 |Network Packet Segment + Headers
2 |Data-Link Frame Packet + Headers
1 |Physical Bit/Symbol Part of the Frame

W2: Multimedia and Applications

Because im in a state of delirium while traveling between Enschede and the Hague, I decided to have a
little bit of fun in this chapter.

What protocol should | use for my app?

So you decided that you want to make a new shiny network app. What are the steps? What do I need?
Let’s start with choosing the Data-Link layer protocol, since that is the only thing from the stacked
architecture we need to care about.

There are two big protocols that are on the test, TCP and UDP.
You also have QUIC(experimental TCP killer) and UNIX sockets (Connections between two processes
on the same host) among others, but they are out of scope of the test.

Let’s start with explaining TCP.
TCP stands for Transfer Control Protocol, which is a mid name. What makes TCP unique though are
the following things.

* Reliability:
o It makes sure that all sent data is received. It resends anything that is lost.
o It makes sure that the data is received in order.

* Congestion control: It throttles itself when the network is congested.

* Flow control: The sender won’t overwhelm the reciever with messages.

* Connection oriented: It needs setup.

This makes TCP good for things that need to be sent 100% reliably and in correct order, like text,
code, files, etc.

But for some things like video and audio, you don’t care that much about lost packets and care a lot
more about the speed, since both video and audio are quite sizable and require really short delays when
streaming. This is where UDP comes in. And yes, User Datagram Protocol is another non-descriptive
and mid name. Let’s see what makes UDP fit for the job:

* Does not have the same overhead TCP has since it just yeets the packets.
* It does not care if the packets arrive and in what order.
* It does not maintain a connection so it is stateless

This makes UDP way faster than TCP as long as you don’t mind some data not having a smooth
landing or just ending up MIA.

You should have some understanding about how they work under the hood from the Observation Labs.

But here are some videos that explains them:

https://yvoutu.be/luwoD5YsGACg UDP vs TCP

Client-Server or Peer to Peer?

The hardest part is organizing how the hosts connect to eachother, since that is where the training
wheels of the layered architecture fall off, you are on your own at this point. Luckily this is not that
hard. There are only two types of architectures at this point. Client-Server and Peer to Peer.

The first one is the Client-Server architecture.

Client-Server is the simplest architecture to maintain, since there in one side that listens for connections
and one side that connects.

It has a little problem though, this architecture has a bottleneck and a single point of failiure, the
server. Everyone has to connect to the server, so when the server goes down or experiences too much
traffic, everyone feels the effects of the disruption.

Another way is the Peer to Peer architecture. Most known from things like bittorrent, it is a more
distributed method. It does not involve a server, so every host using the app is a “peer”(as in equal to
other hosts). This makes a peer both a server and a client in some sense.

This elliminates the bottleneck of the C-S architecture, and makes the system self-scaling, but also
takes out the simplicity. Now every peer on the network both has to connect to other peers and also
listen for incoming connections.

Additionally such a complex systems of_hosts that are not there at all times and change adresses
constantly is difficult to manage.

A simple network app recipe

To create a network application we need to first define what we want from our app.
The basics of a network app are:

* Running on multiple hosts

* Making the hosts communicate

https://youtu.be/uwoD5YsGACg

This seems pretty easy and it actually is that easy. And that is all thanks to the layered architecture.
The layered architecture makes it so you don’t need to care about anything between the two hosts, you
don’t even have to care about what the two hosts are doing beyond some surface understanding about
the trasport layer protocols your damned soul chose to use. We will use TCP in the recipe.

To communicate between two hosts, you need a process on both of them which is a way to represent a
running program by your Operating System. Luckily running any kind of code gives you a process.
Next, you need to open a socket on both of the processes. A socket is basically a portal to another
socket as far as we are concerned, it is owned by one process (as long as you are not doing any
shenanigans). With open and connected sockets you can communicate between the two processes
and in this case two hosts.

You need to determine how you want to organise those socket connections. Most of your favourite
network apps, like a minecraft server work on a client-server architecture, so let’s use that.

To conclude, this are how to create a simple networked app:

¢ Take two networked devices, one will be the client and the other a server.

* Write some code on the server that:
1. Opens a TCP socket and listens for incomming connections.
2. Accept the connection from the client
3. Sends some data, and processes the data the client sends to it.

* Write some code on the client that:
1. Connects to the server by opening a TCP socket with the server as the target.
2. Sends some data, and processes the data the server sends to it.

* Run both of the programs (tip: run the server first)

* Enjoy you network app.

Note: If you choose a different kind of architecture, this will differ. If you choose a different protocol,
you probably just need to open a different kind of socket on both sides.

URL’s

You seen them, you know them:

URL: |https:// |www. wilkuu. XyzZ /projects/inttech |?this_does=nothing
What is | Protocol |subdomain |Domain Domain Path Query (DDA

it for? (second level) |(Top level) thingies right here)
Used |Browser DNS HTTP

by

HTTP

This chapter was written 3 times because Libreoffice kept fighting over RAM with Firefox.

Now that you know how networked apps work. Let’s go into the best example of a Application Layer

protocol (Basically a networked app), HTTP.

HTTP is the protocol that powers the web. It is so good they made HTTP/2 and even HTTP/3. And
some people use HTTP outside just serving websites, since it is so easy to use.

HTTP is a Client-Server protocol based on TCP, (Or QUIC when talking abt. HTTP/3) , that is made to send text,

images and other resources needed to deploy a website.
The working principles of HTTP are simple:
1. Establish a TCP connection with the server.

o The server accepts the conection

2. Request a resource/object using a HTTP request.

o The server sends you the resource

* At this point the client recieves the resource and
server closes the connection.

g &

initiate TCP
connection

RTT. \
/

request

file \
time to
RTT. }transmit
/ file
file —

received

v v

time time

Each of the steps needs to travel in the network to be completed, so each of the numbered thingies
is a round trip, round trip time is the time it takes the client to send something to the server and the
server to respond. In the list above we can see 2 round trips. In addition to that the response time is
dependent on the size of the object so the final formula for the response time is:

2 * RTT + F/R, where F(bits) is the file size and R is the transmission rate (bits/s)

In this case you only receive one object per TCP connection, this is not good for response times.
That is because you waste one round trip just the TCP connection per object. And because you have
to request a lot of objects to get the whole website, like website code(html, js, css), images, videos,
fonts, etc., this adds up! In addition, making TCP connections has overhead from the Operating
System. The only redeeming quality of this is that the browsers can request multiple connections
making the process parallel, this is called pipelining.

Additionally persistent HTTP removes the need for making so many connections. It keeps the TCP
socket alive for a bit longer after each request. With persistent HTTP you can maintain the TCP
connection and thus avoid having it needing to be reestablished all the time, that is it. There is nothing
more to it.

HTTP as protocol.

The HTTP protocol is really simple, you ask the server for a something and the server processes your
request and gives back what you asked for in form of a response. This works in the same way as in a
restaurant, you order and the server delivers. And just like in a restaurant you need to select from a
menu, for that purpose you have the starting line:

leez/nuts HTTP/1.1

This line tells the server what to do. With the first word you define the method, which can be used to
do different things with the server. This is a part of DDA material. The second thing is the path, which
is also the top level of the URL and tells the server which exact file/route to serve. The last thingie is
the version.

After the starting line come the headers. The headers have the following format:

Host: wilkuu.xyz

Content-Type: balls

The most important part to understand is that the headers are always a name-value pair, separated by
a colon(:). The headers give the recipient more information about what the other side wants, one
example is the Content-Type header which gives context about what kind of content is stored in the
body, the next section.

The body is separated from the headers and the starting line by a empty line. The body contains the
data that a server or the client want to send to the other side. For GET requests, there is no body. But
for POST request the body is the form input.

For the response the starting line looks a bit different, but the rest of the response, the headers and
the body look exactly the same. You got the version and the response code. The response code is the
reaction from the server. Abd is

standardised.

LIVE SERVER REACTION

For more info about http you can
look here:
https://developer.mozilla.org/en-
US/docs/Web/HTTP/Messages

imafiip.com I'm a teapot

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Cookies

Because HTTP is stateless, you need some way to maintain sessions, so users can stay logged in when
going to a different page for example.

This is what cookies are for. They are basically a piece of data that is unique per user and is used to
fetch session data from a database. They can be used to track you, so they need your consent to use

them.
client ,g server

ebay 8734 aam

usual http request msg

Amazon server

cookie file Thit creates ID
4 LouallltED fBEHONES 1678 for user create Packend
ebay 8734 set-cookie: 1678 entry database
amazon 1678 T
— usual http request msg :
cookie: 1678 cookie- access
—— specific
. usual http response msg action
one week later: /
access
EVEIETI | usual http request msg _
amazon 1678 cookie: 1678 cookie-
—+ specific
.| usual http response msg action

Video, buffering and streaming.

Have you ever watched a video on a website? Youtube, Netflix, Pirate sites, *certain websites that shall
not be named*? Then you probably streamed video.

Streaming comes in all shapes and sizes:
- Live video: Your favourite bathtub stream on Twitch
- Conversational voice: You and your discord kitten in the voice chat

- Stored video/audio: Youtube etc.

Most attention will be given to stored video here.

Quantization and Encoding

Imagine you record a video of fishes swimming under da sea. How does your camera turn all the
blub blub blub into the beep boop that gets stored in your camera’s memory? The answer is
quantization. For video this is done with pixels and frames. The camera records a frame X times a
second, where X is the framerate. You can say that the scene gets sampled X time a second. Most
common framerates are 60 and 24 frames per second. A frame is a made out of pixels. The pixels are
square thingies that have a single color, and when arraged in a rectangle, form a image, which is our
frame.

For audio, the magnitude of the sound gets sampled Y times a second where Y is the sample rate.

This means that video is a 3d array of pixels (width*height*time), which themselves are most
commonly 4 bytes long.
Audio is a 1d array of magnitudes, which can be sent to the speaker to replicate the audio.

Because the difference in the frames can be really small, there is a lot of redundant data at times.
Therefore encoding is important when there is a need to keep the video small. RAW video is extremely
large, so most video is encoded by default.

There are two ways to encode a video, they can also be used at the same time.
* Spatial: Looks for reduntant data inside the frame
* Temporal: Looks for redundant data between frames

There are two possible encoding results.
* Constant Bit Rate (CBR): The encoding rate stays constant.

* Variable Bit Rate (VBR): The rate changes if there is more redundancy

Problems

Streaming video is a bit problematic, since the client is quite picky. The user needs the video to play
back at a constant rate, for example. I would be weird if the video would become faster and slower as
the speed of the network changes. That can be a problem if the network has a very variable (jittery)
network delay.

The solution is to store a bit of video on the client before playing it out. A buffer makes sure that
there is always a frame available at the correct time, by storing a few seconds of video. When the
network is slow, the buffer gets slowly emptied and the playback is maintained, when the network is
fast again the client fetches frames quicker than it plays them, filling the buffer up again.

To stream strored video you also need to send the data in packets, since the underlying protocols
require that.

buffer fill level,

o 1 | - Q) -
3 I - variable fill playout rate,
i b J’Iﬁ = } o
= e — -—
S —
§ 2, video _,~ ;
sent 2 . 5
1. video I video received, video server client application

«—bufler, size B —

recorded network delay, ayed oul at client
To. 30 v 7 Tixed 1 s 0 rames/sec] (ime
! client
streaming: at this time, client

frames/sec) @ = EXample)

E playing out early part of video,

while server still sending later
(panofvides |

If the

buffer is insufficiently full, because of the network being exceptionally bad. The video stops and waits
for a bit for the new packets to be downloaded. This is called buffering and can be recognised by the
spinning loading circle thingie, which is called a throbber btw.

DASH
Dash is simply video over HTTP.

The server divides the video in chunks in multiple qualities and mutliple locations. The map of all the
chunks to download and where to find them is stored as a manifest file, which the client needs to
download first.

The client downloads those chunks in order, while also seeing if the quality needs to change, because of
the condition of the network. The client does most of the thinking.

https://en.wikipedia.org/wiki/Throbber

W3: Naming and addressing

Ipv4 and ports

When you consider that sending data over the network is like delivering a letter to another room in
another building it you might wonder, how do I know which room in which building the
destination?

This is where adressing comes in. In most cases your building has an adress, and an appartment in
the building as a letter/room number for it. So, an example set of adresses would be:

From: Deez Street 10b
To: Joe’s Avenue 69a

Ipv4 is the most often used Network Layer Protocol and it defines a format for the first part of this
address(black):

From: 167.255.210.0
To: 42.0.69.100

And because the building symbolises a host in this allegory. The first part of the address is the only
thing that Ipv4 cares about, since it’s goal is to show what host the packet is for. But there is also the
question of which room you need to bring the mail. The packet, now technically a segment, has
another address in the Transport Layer Header, the port, which shows which socket(aka the room)
segment needs to go to:

From: 167.255.210.0:42000

To: 42.0.69.100:80

This is how Ipv4 and adressing work on surface level.

You can also decode the ip into hex or bits like this:

167.255.210.0 - a7.ff.d2.00 - 10100111 11111111 11010010 00000000

A building address has a street name and a building number. It is also the case in Ipv4. The subnet
is the street name and the rest of the address is the street number. To split the address into a subnet
and the host portion of the address we can either use classes or CIDR.

Classes:

Cl |Subnet mask size Host part size (House number size) |Split: Subnet vs. Host
ass | (Street name size)

A |8 bits 24 bits 100.1.2.3

B |16 bits 16 bits 200.100.1.2

C |24 bits 8 bits 255.200.100.1

D |n/a n/a Multicasting

E |n/a n/a Research purposes
CIDR:

167.255.210.0 /24 - first 24 bits for the subnet (subnet mask) and the rest for the host

Also, the things connecting different subnets are the routers, they have multiple interfaces
connecting to different subnets, so the routers are like intersections in our allegory.

DHCP

Im stealing too much stuff, I know, but honestly DHCP is not that interesting.

DHCP is a way to give a newly connected host a new IP address. It is good if your host disconnect and
reconnect as in case of any mobile device. It also allows reuse of addresses, since hosts only have a IP

address when they are on.

HCP overview(stolen from the powerpoint):

* Host broadcasts DHCP discover message (optional)

* DHCP server responds with DHCP offer (optional)

* Host requests IP address through DHCP request message

* DHCP server sends IP address in DHCP ack message

DHCP server arriving
(223.1.2.5 DHCP discover client
src : 0.0.0.0, 68
dest.; 255.255.255.255, 67 _
yiaddr: 0.0.0.0 | <
transaction ID: 654 Client broadcasts an

Server listensto , ___—— .o IP-adﬁrserslgtrﬁgEkest in

all DHCP
requests (at dest. 255.255.255.255, 66
UDPport 67) ™ ————___ |yiaddr: 223.1.24 DHCP server
and replies to transaction ID: 654 223.1.2.5 offers th
all (broadcast) lifetime: 3600 seconds — oL ead BHEES THE
with an offer DHCP request adeess 228.1.2 4508 L

hour

srer D.0.0:0, 58 The clients likes this

dest:: 255.255.255.255, 67

yiaddrr: 223.1.2.4 i and now accepts that
T T transaction ID: 655 address 223.1.2.4 for
lifetime: 3600 seconds 1 hour

accept_ance to
oo v e
src: 223.1.2.5, 67

dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4

v transaction ID: 655
lifetime: 3600 seconds -

Link Layer

In the link layer, the both hosts and routers are called nodes. And because some nodes can connect,
disconnect and reconnect somewhere else. Just like people can move to a different street, so can a
node reconnect at a different place on the network. And just like there is a need for people to have a
ID number(BSN, SSN etc) , there is a need for a unique identifier per device. And that identifier is the
MAC (Media Access Control) address:

1A-2F-BB-76-09-AD (48 bits) q

The MAC address is used just to move
a the frame between two directly
connected (neighbouring) nodes.
And each network interface has its
own MAC. g

*+tA-2F-BB-76-09-AD

!

71-65-F7-2B-08-53

4# O adapter
~

58-23-D7-FA-20-B0

<~ 0C-C4-11-6F-E3-98

g

ARP (Address Resolution Protocol)

But because a Media Access Control (MAC) address is needed to communicate between two hosts,
how do you communicate if you only know the IP address?

For this we can use ARP tables:

IP MAC TTL (Time to Live)
192.168.1.69 DE-AD-BE-EF-3A-78 600

192.168.1.10 42-0B-B0-69-10-AC 1000

192.168.1.1 0A-C4-B1-D7-CD-EF 1200

TTL is the time for which the record is valid. After this time you need to look for the MAC address
again. And how do you look for the MAC address? You ask everyone!

What you do is you send a ARP frame that has the destination MAC address of FF-FF-FF-FF-FF-
FF, which means everyone. That frame basically says:

“Who has the IP address of X and what is their MAC address?”
Then the node with that IP address responds with a frame basically saying:
“I have the IP address of X and my MAC address is Y”
Note that this only works if the node you want to send the frame to is directly connected to you.

Otherwise, the correct step is to send the packet to the local router (Using ARP to get it’s MAC
address) and make the router send it further.

The router then looks if it’s directly connected to the target node and if so, uses ARP (table) to find the
targets MAC address and send it to that MAC address.

DNS

But when you downloaded this summary you did not type in the IP address of my web server in
your browser, instead you typed in wilkuu.xyz/projects/inttech (or you clicked on the link). How does
that work?

Introducting DNS (Domain Name System).

DNS is like Googling what address of the closest Albert Heijn is. Or if you are a boomer, looking up
the company in a phone book.

It translates domain names to IP addresses and is a application layer protocol, it has a port of 53
and uses UDP in most cases.

It is distributed and hierarchical.

A centralized server would be a single point of failiure. Also the link delay would make a DNS
lookup too slow on the other side of the world and the traffic to that one server would be massive.

And because it is distributed, some names resolve to different addreses depending on which DNS
server you ask. (most likely a close one) This can be useful for load balancing (CDN’s).

The way DNS is hierarchical, is that there is a root that redirects to the top level domain server,
depending on the top-level domain, which in turn redirects to the authoritative nameserver,
depending on the second level domain.

There is also the local nameserver which is outside of this hierarchy and acts as a cache(just like a
ARP table) and a proxy (be the man in the middle) for the requests to all the servers in the hierarchy.

Hierarchical namespace

Root hameservers (13x)

root DNS server

TLD nameservers

d NS
comNs ‘. .nl DNS server

utwente.nl NS

.utwepte.nl &
local DNS serve
7
www.utwente.nl . | I 8
q authoritative DNS server
Qﬁ? utwente.nl
T requesting host
Local DNS server (resolver) - root nameserver — top-level-domain (TLD) nameserver —
authoritative NS (for second-level-domain) -@ 44

www.utwente.nl

W4: Wireless communication

Speedrun time!!! Kinda incomplete, be warned!

Broadcasting

Two kinds of connections:
* Point to Point —» Host to Switch — Ethernet nowadays

* Broadcast — Shared medium — WiFi, Ethernet in the past

Broadcast connections have a problem of multiple hosts sending information at the same time:
Interference.

This is solved using Multiple Access Control (MAC). Really confusing, I know.
Here is a good article about this, I don’t have time:

https://www.qgeeksforgeeks.org/multiple-access-protocols-in-computer-network/

-- Skipping slide 1-21 of week 4 --

Wireless

The wireless networks works in two modes:

¢ Infrastrutcture: You connect to a Base Station, which then are connected to the rest of the
network.

* Ad-Hoc: You connect directly between nodes.

https://www.geeksforgeeks.org/multiple-access-protocols-in-computer-network/

Transmitting wirelessly has some unique challenges:
Stolen from the powerpoint
Signal strengh decreases as radio signal ,,attenuates” as it propagates through matter
Path loss: 1/r2 ~ 1/r5 — indoor: 1/r3.5
This is why local transmission overwhelms received signal strength
Interference from other radio sources:
Standardized frequencies shared by other devices communicating
Devices such as motors may interfere as well
Multipath propagation:

Radio signal reflects off objects/ ground arrives at receiver at slightly different offset /times

Some wireless protocols with their speed and range: (802.11 is WiFi)

1300 802.11 ac

450 802.11n
. 54 802.11a,g 802.11a,g point-to-point
0
é 5-11 802.11b
‘a; 4 3G: UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO
g
3
1)
o

.384 2.5G: UMTS/WCDMA, CDMA2000

.056 2G: IS-95, CDMA, GSM

Indoor Outdoor
10-30m 50-200m

WiFi: Connecting and Transmitting

Everyone asks for the WiFi, but nobody asks how is WiFi. WiFi is a wireless protocol that most mobile
devices use for connectivity.

It can run in both Infrastructure mode and Ad Hoc mode, but most often Infrastructure mode is
used.

To connect to a WiFi network a hest must associate with an Access Point:
1. Listen for the Access Points to broadcast a beacon frame, which indicates the AP’s presence.
2. Select one of the AP’s
3. Send a Association Request Frame, which tells the AP that you want to connect
4. Recieve a Association Response Frame from the AP.
5. You are connected and probably want to claim a IP address through DHCP
Note that you might have to authenticate before association.
This is called passive association.
There is also active association, where you replace step 1 with:
1. Broadcast a Probe Request
2. Listen for a Probe Responses from AP you can associate with.
3. Continue with step 2...

Wifi uses either CSMA/CA protocol or CTS/RTS protocol for Multiple Access Control see
powerpoint slides: 38-43 and https://www.geeksforgeeks.org/multiple-access-protocols-in-computer-
network/

A quick summary of both is:

* CSMA/CA: Avoids collisions, but does not detect them. It sees if the channel is busy and if it
isn’t for some time, then it sends the data, and then waits for an ACKnowledgement.

* CTS/RTS: Asks the AP if it does not expect a transmission from any other node by sending a
Request To Send frame. The AP responds with Clear To Send frame that also specifies the
node that can start transmitting.

* CTS/RTS - is better, since you avoid large frames colliding and wasting transmission time.

https://www.geeksforgeeks.org/multiple-access-protocols-in-computer-network/
https://www.geeksforgeeks.org/multiple-access-protocols-in-computer-network/

WiFi: Addressing

WiFi Adressing is a bit more complicated than Ethernet addressing, but it is doable:

Header Address 1 Address 2 Address 3
What is the The WiFi Frame goes | The frame was sent from | Where should the frame be
address for: here (AP) here (Host) forwarded to (A router)

@72

7 55> Internet

H1 . R1 router
.
55 55
[R1 MAC addr | H1 MAC addr]

dest. address source address

802.3 frame
55 5 (Ethernet)
[55 AP MAC addr |H1 MAC addr R1 MAC addr”]
address 1 address 2 address 3
802.11 frame (Wifi)
2 2 6 6 6 2 6 0-2312 4

/ \Address 4: used

Address 1: MAC address only in ad hoc

of wireless host or AP FGEE
to receive this frame Address 3: MAC
address
Address 2: MAC address of router interface to
of wireless host or AP which AP is attached

transmitting this frame

W5: “Cybersecurity”

In this week on Internet Technology, time to explain the least Cybersecurity topic of Cybersecurity, the
DDoS attack.

DDoS basics

A Distributed Denial of Service attack is based on flooding a certain server or service with trash
packets/requests, using multiple compromised(hacked) systems in order to disrupt the normal activities
of the server/service.

This is like forting 10 people to prank call a pizza place, by ordering 100 pizzas to the north pole each.

DDoS attacks are often performed against big targets, like governments, big companies, financial
institutions, ISP’s etc.

In addition to that, smaller DDoS attacks are used as a signature weapon of the most oppressed group
of people on earth, gamers, against other gamers.

Where do | get some of them compromised systems?

Internet Of Things (IOT) devices of course. IOT devices are small, cheap and often securityless hosts
that are connected to the internet, just because it sounds cool to the consoomer for them to be
connected to a phone app.

Those are perfect, since you don’t have to be a epic hackerman to get into a lot of them and there
are millions of them just waiting for you to compromise them. (Most of them have the same default
admin username and password.) When you have so many compromised systems at your disposal, you
can call them a botnet.

This is how Mirai, one of the biggest Botnets, was formed and then used to DDoS Dyn, which shut
down it’s operations shortly afterwards due to the sheer scale of the attack.

Botnet malware is in essence a networked application and it for controlling it it might use either a
Client-Server or a Peer to Peer protocol.

Mirai used a Client-Server protocol by having a central Command&Contol server.

Hajime, another botnet used Peer to Peer instead, controlling it means connecting to one of the
compromised hosts, which then spreads the word to the rest of the botnet.

Amplification and Reflection

To reduce the traffic the target returns to your botnet, you might consider reflecting the traffic of other

hosts, this works by faking the source IP to that of the target on the Network layer header and sending

this fake packet to the reflector server. The reflector thinks that the target sent this packet and responds
by sending a packet to it. This way your botnet only needs a high sending bandwith.

In order to make the most of your botnet you want to amplify the amount of trafic it generates. To do
that you might use a amplification method along reflection. This means that the reflector generates a
way bigger response than the fake packet it was sent.

An example of this is a fake DNS request:
$ dig any utwente.nl @y.y.y.y +notcp

00:00:00.937437 IP (..., proto UDP (17), length 79)

X.X.X.x.40669 > y.y.y.y.53: .. ANY? Utwente.nl.
00:00:00.965843 IP (..., proto UDP (17), |)
V.V.¥.Y.53 > x.x.x.x.40669: ...

00:00:00.965843 IP (..., proto UDP (17), 2)
V.Y VY > XXX ip-proto-17

00:00:00.965843 IP (..., proto UDP (17), 4)
VY VY > XX ip-proto-17

Amplification Factor = (s) / (sent bytes) = (24) [(79) =45

DDoS attack types

Volumetric attacks (Layer 3 and below): Throw as many bits of data at the target as possible.

Measured in bits per second (bps)

o Sending a bunch of UDP packets. (Amplified using DNS)

Protocol (Layer 4) attacks: Exhaust as much of the target’s resources by for examples
maintaining as many connections to the target as possible. Measured in packets per second

(pps)

© TCP SYN Flood: Fake as many TCP connections as possible by initating handhakes for

other hosts.

T

& >

Attacker

& & |-
oy ==
N /
~
@ Spoofed SYN & _E_ YN/ACH
_____ £
& By —

Application attacks (Layer 5/7): Make as many request to the networked application as

possible. Measured in requests per second (rps)

o HTTP Flood: Send a bunch of GET requests.

Mitigation

Anycast: use multiple servers with the same IP

Blackholing: redirect malicious clients to a fake server

Rate limiting: limit the amount of requests/connections a single hosts can do.

Detect and discard spoofed packets (eliminates reflection)

Firewall: Block certain hosts from using the service

W6: IOT Guest lecure

IDK, It was basically making fun of IOT and more abt DDoSsing

I put most of the things from here into Week 5 where they fit better.

TLDR

IOT devices are made to be novel and cheap and not secure. The manufacturers do not have incentives
to make stuff secure, since security does not sell them products. This means that IOT devices are a
security and privacy risk, unless regulated correctly.

	Preamble
	W1: Intro
	Internet
	The edge
	The core
	Packets
	Circuit switching
	Store and Forward model
	A little tip
	Layers

	W2: Multimedia and Applications
	What protocol should I use for my app?
	Client-Server or Peer to Peer?
	A simple network app recipe
	URL’s
	HTTP
	HTTP as protocol.
	Cookies
	Video, buffering and streaming.
	Quantization and Encoding
	Problems
	DASH

	W3: Naming and addressing
	Ipv4 and ports
	DHCP
	Link Layer
	ARP (Address Resolution Protocol)
	DNS

	W4: Wireless communication
	Broadcasting
	Wireless
	WiFi: Connecting and Transmitting
	WiFi: Addressing

	W5: “Cybersecurity”
	DDoS basics
	Where do I get some of them compromised systems?
	Amplification and Reflection
	DDoS attack types
	Mitigation

	W6: IOT Guest lecure
	IDK, It was basically making fun of IOT and more abt DDoSsing
	TLDR

